Full Content is available to subscribers

Subscribe/Learn More  >

Dynamic Optical Investigations of Hypervelocity Impact Damage

[+] Author Affiliations
Leslie E. Lamberson, Ares J. Rosakis

California Institute of Technology, Pasadena, CA

Paper No. IMECE2009-11740, pp. 43-44; 2 pages
  • ASME 2009 International Mechanical Engineering Congress and Exposition
  • Volume 1: Advances in Aerospace Technology
  • Lake Buena Vista, Florida, USA, November 13–19, 2009
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4374-1 | eISBN: 978-0-7918-3863-1
  • Copyright © 2009 by ASME


Hypervelocity impact is a rising concern in spacecraft missions where man-made debris in low-earth orbit as well as micrometeroids have the potential to damage not only the structural components, but also the optical, electrical, and thermal components of a space asset. Little has been investigated regarding damage mechanisms and dynamic fracture mechanics resulting from a hypervelocity impact in-situ. Two optical techniques, the methods of photoelasticity and caustics, in conjunction with high-speed photography are used to examine stress waves from impact of unloaded plates, as well as pre-cracked and pre-loaded plates in tension. The resulting photographs are analyzed to extract information regarding stress wave interactions, crack speeds and the dynamic stress field ahead of the moving cracks.

Copyright © 2009 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In