0

Full Content is available to subscribers

Subscribe/Learn More  >

Liquid Micro-Jet Array Impingement Cooling for Large Area Systems

[+] Author Affiliations
Avijit Bhunia, C. L. Chen

Teledyne Scientific Company, Thousand Oaks, CA

Paper No. IMECE2009-12981, pp. 11-17; 7 pages
doi:10.1115/IMECE2009-12981
From:
  • ASME 2009 International Mechanical Engineering Congress and Exposition
  • Volume 1: Advances in Aerospace Technology
  • Lake Buena Vista, Florida, USA, November 13–19, 2009
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4374-1 | eISBN: 978-0-7918-3863-1
  • Copyright © 2009 by ASME

abstract

The necessity for high heat flux cooling over large areas is growing rapidly with the increasing push towards more electric systems. A significant amount of research over the past two decades has conclusively proved the suitability of impingement cooling, such as jet and droplet array, spray, etc. However all these works are focused on a small heat source area, typically about a few cm2 . Can a large array of impingement pattern covering a much wider area achieve similar heat flux levels? In pursuit of an answer, this article presents liquid micro-jet array impingement cooling of a heat source that is about two orders of magnitude larger in size compared to the previous works. Experiments are carried out with 441 jets of water and dielectric liquid HFE7200, each 200 μm diameter, impinging on a 189 cm2 area surface, in free surface and confined jet configurations. The measured values of average heat transfer coefficient are compared with correlations from the literature. While some correlations show excellent agreement, others deviate significantly. The ensuing discussion suggests that the post impingement liquid dynamics, particularly the collision between the liquid fronts on the surface created from surrounding jets, is the most important criterion dictating the average heat transfer coefficient. Thus, similar thermal performance can be achieved irrespective of the length scale, as long as the flow dynamics are similar. These results decisively prove the scalability of the liquid micro-jet array impingement technique for cooling a few cm2 area to 100s of cm2 area.

Copyright © 2009 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In