0

Full Content is available to subscribers

Subscribe/Learn More  >

Residual Stress Profiles in High Speed Machining and Microforming of Biodegradable Orthopedic Implants

[+] Author Affiliations
M. Salahshoor, Y. B. Guo

The University of Alabama, Tuscaloosa, AL

Paper No. IJTC2011-61042, pp. 31-33; 3 pages
doi:10.1115/IJTC2011-61042
From:
  • ASME/STLE 2011 International Joint Tribology Conference
  • ASME/STLE 2011 Joint Tribology Conference
  • Los Angeles, California, USA, Oct 24–26, 2011
  • ISBN: 978-0-7918-5474-7
  • Copyright © 2011 by ASME

abstract

Biodegradable magnesium-calcium alloy is an attractive orthopedic biomaterial compared to permanent metallic alloys. However, the critical issue is that magnesium-calcium alloy corrodes too fast in the human organism. Hook-shaped compressive residual stress profiles, induced by various surface modification techniques in near surface zone, are proven to slower the degradation rate. This guarantees the presence of the implant in-vivo till the metabolic reactions leading to healing are over. The knowledge on how process parameters affect residual stress profiles is fundamental in successfully engineering the implants surface. Majority of surface modification techniques fall into two broad categories of cutting and forming operations. This study investigates the effects of process parameters in high speed face milling, representing a cutting operation, and low plasticity burnishing, as a micro forming process, on residual stress and microhardness profiles.

Copyright © 2011 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In