0

Full Content is available to subscribers

Subscribe/Learn More  >

Transient Filling of Sacrificially Etched Nanochannels by Capillarity

[+] Author Affiliations
M. Hamblin, D. Murray, D. Maynes, A. Hawkins

Brigham Young University, Provo, UT

Paper No. FEDSM2009-78548, pp. 555-560; 6 pages
doi:10.1115/FEDSM2009-78548
From:
  • ASME 2009 Fluids Engineering Division Summer Meeting
  • Volume 2: Fora
  • Vail, Colorado, USA, August 2–6, 2009
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-4373-4 | eISBN: 978-0-7918-3855-6
  • Copyright © 2009 by ASME

abstract

In this paper we present results of an experimental investigation that explores the transient filling of nanochannels due to capillarity. The nanochannels explored here were fabricated using sacrificial metal cores and were designed to mimic the parallel-plate channel geometry. Channels of heights ranging from 41 to 91 nm were utilized in the experimental program and both aluminum and chromium were utilized as the sacrificial metal from which the channels were formed. The filling dynamics of channels that were closed on one end were also explored. The data reveal that the channels fabricated with aluminum as the sacrificial core yield marked departure from expected behavior, with the apparent frictional constant significantly elevated above classical values. Potential reasons for the departure are discussed. Channels fabricated with chromium cores result in behavior that yields much less deviation from anticipated Stokes flow behavior. However, for these channels the meniscus speed is observed to vary markedly across the channels transverse width. Channels that are closed on one end yield behavior that is significantly different from the open-ended channel results. Here the meniscus becomes destabilized as it approaches the capped channel end and the trapped air becomes entrained by the liquid and dispersed without evidence of bubble existence.

Copyright © 2009 by ASME
Topics: Capillarity

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In