0

Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Simulation of the Backlayer Critical Velocity in the Memorial Tunnel Test (MTFVTP)

[+] Author Affiliations
Eduardo Blanco, Javier Cueto, Joaquín Fernández, Raúl Barrio

Universidad de Oviedo, Gijón, Spain

Paper No. FEDSM2008-55256, pp. 985-990; 6 pages
doi:10.1115/FEDSM2008-55256
From:
  • ASME 2008 Fluids Engineering Division Summer Meeting collocated with the Heat Transfer, Energy Sustainability, and 3rd Energy Nanotechnology Conferences
  • Volume 1: Symposia, Parts A and B
  • Jacksonville, Florida, USA, August 10–14, 2008
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-4840-1 | eISBN: 0-7918-3832-3
  • Copyright © 2008 by ASME

abstract

Road tunnels constitute key elements in the traffic net, especially for the long distance road transportation but also in the large urban areas. Although security preventions have permitted a relatively low index of accidents in tunnels, the analysis of the accidents in road tunnels during the last years shows an increment in both the number of cases and their gravity. In the case of fires, the control of the smoke propagation becomes crucial because the major risk for people is smoke inhalation rather than the direct exposure to the fire itself. Besides, a quick control of the fire requires that the access and evacuation routes are maintained without smoke. However, research in this field has been limited by the difficulties inherent in the problem, and so there are few experimental data available. This paper pursues the study of the control of the smoke propagation in tunnel roads with a longitudinal air stream. The methodology is based on the numerical simulation of the time evolution of the air and smoke flows induced after the onset of localized fires of different magnitude. Specifically, 10, 20, 50 and 100 MW fires were simulated. A general purpose computational fluid dynamics software is used for this investigation, due to its ability to model multi-species three-dimensional unsteady flows. The general purpose of the paper is the refinement and contrast of a numerical procedure for the simulation of fire tunnels with natural and longitudinal ventilation, as the particular case with the most complex and restrictive conditions, and the use of such procedure to study the backlayering phenomenon. The obtained results were compared with the natural and longitudinal ventilation tests of the Memorial Tunnel test as well as with previous studies.

Copyright © 2008 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In