0

Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Evaluation and Comparison of Different Reduced Mechanisms for Predicting the Performance of a SOFC Operating on Coal Syngas

[+] Author Affiliations
Francisco Elizalde-Blancas, Suryanarayana R. Pakalapati, Jose A. Escobar-Vargas, Ismail B. Celik

West Virginia University, Morgantown, WV

Paper No. FEDSM2008-55280, pp. 755-763; 9 pages
doi:10.1115/FEDSM2008-55280
From:
  • ASME 2008 Fluids Engineering Division Summer Meeting collocated with the Heat Transfer, Energy Sustainability, and 3rd Energy Nanotechnology Conferences
  • Volume 1: Symposia, Parts A and B
  • Jacksonville, Florida, USA, August 10–14, 2008
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-4840-1 | eISBN: 0-7918-3832-3
  • Copyright © 2008 by ASME

abstract

Three-dimensional numerical simulations of an anode supported button solid oxide fuel cell were performed using the code developed in house DREAM SOFC. The cell operates on coal syngas at atmospheric pressure and 1073 K. A gas phase mechanism and a heterogeneous mechanism are studied in this work to assess their influence on the performance of the button cell. Both mechanisms take into account the steam methane reforming reaction and water gas shift reaction. The implemented electrochemistry model allows the cell to simultaneously electrochemically oxidize H2 and CO. Results show that methane reforming from the bulk reactions is negligible compared to the catalyzed reactions. Also with a higher reformation the power delivered by the cell is improved. A small temperature difference of one degree is observed when both mechanisms are compared. The electrochemistry model does not require the ratio between current produced from H2 and CO to be prescribed a priori as an input. Under the operating conditions used in this study the model predicts the ratio to be around 4 for both mechanisms.

Copyright © 2008 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In