Full Content is available to subscribers

Subscribe/Learn More  >

Explorations of Improving Flow Uniformity in the Bipolar Plate of a PEM Electrolysis Cell Using Different Designs

[+] Author Affiliations
J. H. Nie, Y. T. Chen, J. F. Wu, K. M. Veepuri

University of Nevada-Las Vegas, Las Vegas, NV

Paper No. FEDSM2008-55187, pp. 725-732; 8 pages
  • ASME 2008 Fluids Engineering Division Summer Meeting collocated with the Heat Transfer, Energy Sustainability, and 3rd Energy Nanotechnology Conferences
  • Volume 1: Symposia, Parts A and B
  • Jacksonville, Florida, USA, August 10–14, 2008
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-4840-1 | eISBN: 0-7918-3832-3
  • Copyright © 2008 by ASME


Optimization of electrolysis cell for producing hydrogen is dependent of a set of complex physical and chemical processes occurring simultaneously. Similar to fuel cells, it has been demonstrated that these processes are strongly dependent on the fluid dynamics inside the fuel cell. Bipolar plates are important components of PEM electrolysis cells because they are the first stage of the flow distribution system. A non-uniform flow distribution across the bipolar plate surface area will probably lead to an unbalanced use of the precious catalyst, and an overall efficiency of the device lower than expected. In the present work various concepts were tested for the purpose of improving flow uniformity in the bipolar plate of a PEM electrolysis cell for hydrogen generation. Numerical results including pressure distributions and velocity profiles are reported. It is shown that the flow uniformity within the designed bipolar plate is greatly improved compared with the baseline bipolar plate for water electrolysis.

Copyright © 2008 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In