0

Full Content is available to subscribers

Subscribe/Learn More  >

Efficiency Enhancement by Shape Optimization of Centrifugal Fan Installed in Refuse Collecting System

[+] Author Affiliations
Choon-Man Jang

Korea Institute of Construction Technology, Goyang, Republic of Korea

Sang-Yoon Lee

TAESUNG ANST, Seoul, Republic of Korea

Sang-Ho Yang

Samwon E & B Ltd., Shihung, Republic of Korea

Paper No. FEDSM2009-78491, pp. 193-199; 7 pages
doi:10.1115/FEDSM2009-78491
From:
  • ASME 2009 Fluids Engineering Division Summer Meeting
  • Volume 2: Fora
  • Vail, Colorado, USA, August 2–6, 2009
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-4373-4 | eISBN: 978-0-7918-3855-6
  • Copyright © 2009 by ASME

abstract

Shape optimization in the design of turbomachinery based on the three-dimensional flow analysis has been developed remarkably in recent years with the rapid enhancement of computational power. In the present study, optimal design of a centrifugal fan installed in refuse collecting system has been performed using response surface method and three-dimensional Navier-Stokes analysis to increase fan efficiency. The centrifugal fan is used to increase suction pressure for the moving of a waste through the pipe line of the system. Two design variables, which are used to define the shape of an inlet guide, are introduced to increase the efficiency of the fan. In the shape optimization using the response surface method, data points for response evaluations are selected, and linear programming method is used for an optimization on a response surface. To analyze three-dimensional flow field in the centrifugal fan, general analysis code, CFX, is employed in the present work: SST turbulence model is employed to estimate the eddy viscosity. Unstructured grids are used to represent a composite grid system including blade, casing and inlet guide. Throughout the shape optimization of a centrifugal fan, the fan efficiency is successfully increased by decreasing local losses in the blade passage. The result of shape optimization shows that the efficiency of the optimized shape at the design flow condition is enhanced by 1.42% based on the reference fan. It is found that recirculation flow region of optimum one is relatively small compared to the reference one. The reduction of recirculation region can be decreased the shaft power of an impeller, thus it can be increased the efficiency of the fan.

Copyright © 2009 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In