0

Full Content is available to subscribers

Subscribe/Learn More  >

Fluid-Power Harvesting by Pneumatic Bellow During Human Gait

[+] Author Affiliations
Robin Chin, Elizabeth T. Hsiao-Wecksler, Eric Loth

University of Illinois at Urbana-Champaign, Urbana, IL

Paper No. FEDSM2008-55211, pp. 599-606; 8 pages
doi:10.1115/FEDSM2008-55211
From:
  • ASME 2008 Fluids Engineering Division Summer Meeting collocated with the Heat Transfer, Energy Sustainability, and 3rd Energy Nanotechnology Conferences
  • Volume 1: Symposia, Parts A and B
  • Jacksonville, Florida, USA, August 10–14, 2008
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-4840-1 | eISBN: 0-7918-3832-3
  • Copyright © 2008 by ASME

abstract

In this paper, we describe power and pressure characteristics of bellows designed for under-foot power harvesting during human walking for a single cycle. This single cycle corresponds to the typical human gait cycle (heel-strike and stance on the floor to toe-off and free swing to subsequent re-contact with the floor, with a total duration of about one second). A bellow can be placed in a shoe insole and compressed during initial heel strike or during the mid-stance portion of the gait cycle. The compressed fluid can then be used for power applications during the remaining portion of the cycle. A collapsible spring was placed inside the bellow to extend it when the foot is off the ground, yet allow the bellow to be compressed. Air is drawn into the bellow through a one-way valve allowing the bellow to recharge as it expands during the swing phase of the gait cycle. Thus, body weight is used as the power source for a self-contained pneumatic circuit. Experimental studies were conducted on two circular bellows with outside diameters of 1.625 in and 2.5 in (4.13 cm and 6.35 cm) and stroke lengths of approximately 1.4 cm. The pressure dynamics of the bellows placed under the heel of the foot or under the ball of the foot were investigated while walking on a treadmill. These pressure profiles were then reproduced on a compression testing machine to investigate the power generated per gait cycle. The results indicate that the bellows generated a peak power during normal walking of approximately 25–30 W and a maximum pressure of 450 kPa. The average power available over a single gait cycle is on the order of 1 W. This novel use of bellows demonstrates the ability to use these devices for regenerative fluid power harvesting capabilities during walking.

Copyright © 2008 by ASME
Topics: Fluids

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In