Full Content is available to subscribers

Subscribe/Learn More  >

Fully Coupled Three-Scale Finite Element Model for the Mechanical Response of a New Bio-Inspired Composite

[+] Author Affiliations
Erick I. Saavedra Flores, Senthil Murugan, Michael I. Friswell, Eduardo A. de Souza Neto

Swansea University, Swansea, UK

Paper No. SMASIS2011-4946, pp. 591-598; 8 pages
  • ASME 2011 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
  • ASME 2011 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, Volume 2
  • Scottsdale, Arizona, USA, September 18–21, 2011
  • ISBN: 978-0-7918-5472-3
  • Copyright © 2011 by ASME


This paper proposes a fully coupled three-scale finite element model for the mechanical description of an alumina/magnesium alloy/epoxy composite inspired in the mechanics and architecture of wood cellulose fibres. The constitutive response of the composite (the large scale continuum) is described by means of a representative volume element (RVE, corresponding to the intermediate scale) in which the fibre is represented as a periodic alternation of alumina and magnesium alloy fractions. Furthermore, at a lower scale the overall constitutive behavior of the alumina/magnesium alloy fibre is modelled as a single material defined by a large number of RVEs (the smallest material scale) at the Gauss point (intermediate) level. Numerical material tests show that the choice of the volume fraction of alumina based on those volume fractions of crystalline cellulose found in wood cells results in a maximisation of toughness in the present bio-inspired composite.

Copyright © 2011 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In