Full Content is available to subscribers

Subscribe/Learn More  >

Stretching Fields and Flow Mixing Enhancement of Rarified Gases in Micro-Grooved Channels by the Lattice-Boltzmann Method

[+] Author Affiliations
Amador M. Guzmán, Luis E. Sanhueza, Andrés J. Díaz

Universidad de Santiago de Chile, Santiago, Chile

Rodrigo A. Escobar

Pontificia Universidad Católica de Chile, Santiago, Chile

Paper No. FEDSM2008-55120, pp. 551-560; 10 pages
  • ASME 2008 Fluids Engineering Division Summer Meeting collocated with the Heat Transfer, Energy Sustainability, and 3rd Energy Nanotechnology Conferences
  • Volume 1: Symposia, Parts A and B
  • Jacksonville, Florida, USA, August 10–14, 2008
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-4840-1 | eISBN: 0-7918-3832-3
  • Copyright © 2008 by ASME


The Eulerian and Lagrangian characteristics of a rarified gas flow have been investigated and related to flow mixing enhancement in micro grooved channels. The governing Boltzmann Transport Equation (BTE) is solved by the Lattice-Boltzmann method (LBM) for the Knudsen number range of 0.01−0.1. First, the Eulerian flow characteristics are determined by performing numerical simulations for different Knudsen numbers, pressure ratio and accommodation coefficients with the objective of obtaining reliable velocity characteristics and flow patterns, and determining the transition characteristics from the macro to microscale. The numerical predictions are compared to existing analytical and numerical results. Then, the Lagrangian characteristics are obtained by integrating the Eulerian velocity field by a 4t order Runge-Kutta scheme. Ten thousands (10,000) pairs of fluid particles are used to determine fluid particle Lagrangian trajectories, future stretching fields, and Lagrangian Lyapunov exponents, which are used for determining the grooved channel regions with high and low flow mixing enhancement. Our results demonstrate that rarified gas flows develop a future stretching field leading to the existence of Lagrangian chaos and flow mixing enhancement for very low, stable and time independent Reynolds number flow regime. This flow behavior departure from the well accepted concept that Lagrangian chaos and flow mixing enhancement need a time dependent 2D flow.

Copyright © 2008 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In