0

Full Content is available to subscribers

Subscribe/Learn More  >

Analysis and Modelling of a Fluidic Actuator

[+] Author Affiliations
Caroline Braud, Arthur Dyment, Jean Marc Foucaut, Michel Stanislas

Laboratoire de Mécanique de Lille, Villeneuve d’Ascq, France

Jim Kostas

Monash University, Clayton, VIC, Australia

Paper No. FEDSM2008-55027, pp. 473-480; 8 pages
doi:10.1115/FEDSM2008-55027
From:
  • ASME 2008 Fluids Engineering Division Summer Meeting collocated with the Heat Transfer, Energy Sustainability, and 3rd Energy Nanotechnology Conferences
  • Volume 1: Symposia, Parts A and B
  • Jacksonville, Florida, USA, August 10–14, 2008
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-4840-1 | eISBN: 0-7918-3832-3
  • Copyright © 2008 by ASME

abstract

This paper deals with the fluidic actuators in the pulsed mode used in turbulent boundary layer control, in particular as vortex generator (VG) in order to delay separation. Recently the study by Kostas et al (2007) has shown the importance of the transient phase of the VG actuators. In particular, an enhancement of the vortex-generation mechanism has been observed during the transient period, that is responsible for an increase of turbulence stress levels up to 200% relatively to the non actuated case. A large dependency of the exit velocity on the physical characteristic of the feed tube has been detected. This dependency suggests that a precise quantification of the pulsed jet dynamic during the transient period is necessary. In this work the transient behavior of the fluidic actuators used by Kostas et al (2007) is analyzed and experimented. A model is developed to explain the dynamics of the flow inside the actuator. On the whole, experiments show that the role of all physical parameters is consistent with the foreseen properties. The results obtained help to separate the input dynamic of the controller from the controlled flow. Another perspective of this work is to provide a guide for the design of fluidic actuators.

Copyright © 2008 by ASME
Topics: Actuators , Modeling

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In