Full Content is available to subscribers

Subscribe/Learn More  >

Electrohydrodynamic (EHD) Pump in a Square Channel

[+] Author Affiliations
C. C. Ngo

University of North Dakota, Grand Forks, ND

N. M. Brown

University of Technology, Kingston, Jamaica

F. C. Lai

University of Oklahoma, Norman, OK

Paper No. FEDSM2008-55185, pp. 261-267; 7 pages
  • ASME 2008 Fluids Engineering Division Summer Meeting collocated with the Heat Transfer, Energy Sustainability, and 3rd Energy Nanotechnology Conferences
  • Volume 1: Symposia, Parts A and B
  • Jacksonville, Florida, USA, August 10–14, 2008
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-4840-1 | eISBN: 0-7918-3832-3
  • Copyright © 2008 by ASME


The electrohydrodynamics (EHD) technique has shown promising results in enhancing heat transfer and mass transport. It has endless potential in industrial applications such as drying technology, design of evaporators, condensers, electrostatic precipitator, plasma actuator, and micropumps in microfluidic, chip-integrated cooling, and drug delivery systems. In recent years, a significant amount of research has been directed to design EHD micropumps as researchers realize their attractive features (e.g., no moving part, simple fabrication process) are most suitable in the aforementioned microelectro-mechanical systems (MEMS). This paper evaluates the performance of an EHD pump in a vertical square (4 × 4 inch) channel with a non-intrusive wire-electrode configuration. The voltage and current characteristics of the EHD pump are measured such that numerical simulations can be carried out. Measurements were taken from the corona threshold voltage to the occurrence of sparkover with a 1 kV increment. Due to the corona wind generated, the average volume flow rate in the channel was as high as 10 liter per second subjected to a voltage difference of 25 kV.

Copyright © 2008 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In