0

Full Content is available to subscribers

Subscribe/Learn More  >

Forced Convection in Cross Flow of Power Law Fluids Over a Pair of Circular Cylinder in Tandem Arrangement

[+] Author Affiliations
Rahul C. Patil, Ram P. Bharti, Raj P. Chhabra

Indian Institute of Technology, Kanpur, India

Paper No. FEDSM2008-55066, pp. 207-215; 9 pages
doi:10.1115/FEDSM2008-55066
From:
  • ASME 2008 Fluids Engineering Division Summer Meeting collocated with the Heat Transfer, Energy Sustainability, and 3rd Energy Nanotechnology Conferences
  • Volume 1: Symposia, Parts A and B
  • Jacksonville, Florida, USA, August 10–14, 2008
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-4840-1 | eISBN: 0-7918-3832-3
  • Copyright © 2008 by ASME

abstract

Forced convection heat transfer characteristics for the flow of incompressible power law fluids over a pair of cylinders (of equal diameters) in tandem arrangement have been studied numerically in the two-dimensional, steady cross-flow regime. The field equations have been solved using a finite volume method based solver (FLUENT 6.2) over the ranges of conditions as follows: power law index (n = 0.4, 1, 1.8), Reynolds number (Re = 1, 40), Prandtl number (Pr = 1, 100), the gap between the two cylinders (G = 2) and for two thermal boundary conditions, namely constant temperature or heat flux prescribed on the surface of the two cylinders. While the upstream cylinder shows heat transfer characteristics similar to that of an isolated cylinder, the downstream cylinder displays a complex dependence on the relevant dimensionless parameters. Both the wake interference and power-law rheology influence the heat transfer characteristics to varying extents. Generally, the upstream cylinder shows higher values of the average Nusselt number than the downstream cylinder. However, the average Nusselt number values for both cylinders are seen to be smaller than that for a single cylinder otherwise under identical conditions. With reference to Newtonian fluids, the shear-thinning behaviour promotes heat transfer whereas shear-thickening lowers it.

Copyright © 2008 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In