Full Content is available to subscribers

Subscribe/Learn More  >

Direct Numerical Simulation of the Motion of Particles Larger Than the Kolmogorov Scale in a Homogeneous Isotropic Turbulence

[+] Author Affiliations
Cedric Corre, Jean-Luc Estivalezes

ONERA/DMAE, Toulouse, France

Stephane Vincent

Université Bordeaux I, Pessac, France

Olivier Simonin

Institut de Mécanique des Fluides de Toulouse, Toulouse, France

Paper No. FEDSM2008-55156, pp. 121-128; 8 pages
  • ASME 2008 Fluids Engineering Division Summer Meeting collocated with the Heat Transfer, Energy Sustainability, and 3rd Energy Nanotechnology Conferences
  • Volume 1: Symposia, Parts A and B
  • Jacksonville, Florida, USA, August 10–14, 2008
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-4840-1 | eISBN: 0-7918-3832-3
  • Copyright © 2008 by ASME


Predicting interactions between particles and a surrounding viscous fluid is the concern of many environmental and industrial applications. A Direct Numerical Simulation (DNS) of dilute isotropic turbulent particulate flow has been conducted in a periodic box, with 1283 grid points. The objective is to understand the modification of isotropic turbulence due to dispersed solid particles by analyzing the DNS results. Previous numerical simulations have been, for the most part, limited to the point-particle regime. On the opposite, in these simulations, the diameter of the particles is larger than the Kolmogorov length scale. In order to maintain a constant turbulent kinetic energy, a physical forcing scheme is implemented. Thereby, statistics on the characteristics of the particles are more reliable. Furthermore, interactions between particles are treated via a repulsing force, consequently, simulations are four-way coupling. Simulations are performed with a fictitious domain approach and with the penalty method. For solving the velocity-pressure coupling, an augmented Lagrangian optimization algorithm is used. Results present the influence of the particle phase on the turbulence spectrum. Moreover, the comparison with particle-free case is particularly interesting notably about the anisotropy of the flow caused by the presence of the particles.

Copyright © 2008 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In