0

Full Content is available to subscribers

Subscribe/Learn More  >

Application of a Split-Fiber Probe to Velocity Measurement in the NASA Research Compressor

[+] Author Affiliations
J. Lepicovsky

QSS Group, Inc., Cleveland, OH

Paper No. GT2004-53954, pp. 765-775; 11 pages
doi:10.1115/GT2004-53954
From:
  • ASME Turbo Expo 2004: Power for Land, Sea, and Air
  • Volume 2: Turbo Expo 2004
  • Vienna, Austria, June 14–17, 2004
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 0-7918-4167-7 | eISBN: 0-7918-3739-4
  • Copyright © 2004 by ASME

abstract

A split-fiber probe was used to acquire unsteady data in a research compressor. The probe has two thin films deposited on a quartz cylinder 200 μm in diameter. A split-fiber probe allows simultaneous measurement of velocity magnitude and direction in a plane that is perpendicular to the sensing cylinder. A calibration method was devised for a split-fiber probe, and a new algorithm was developed to decompose split-fiber probe signals into velocity magnitude and direction. The algorithm is based on the minimum value of a merit function that is built over the entire range of flow velocities for which the probe was calibrated. The new decomposition scheme is fast and robust. The split-fiber probe performance and signal decomposition was first verified in a free-jet facility by comparing the data from three thermo-anemometric probes, namely a single-wire, a single-fiber, and the split-fiber probe. The wire and single-fiber probe diameters are 5 μm and 70 μm, respectively. All three probes performed extremely well as far as the velocity magnitude was concerned. However, there are differences in the peak values of measured velocity unsteadiness in the jet shear layer. The single-wire probe indicates the highest unsteadiness level, followed closely by the split-fiber probe. The single-fiber probe indicates a noticeably lower level of velocity unsteadiness. Experiments in the NASA Low Speed Axial Compressor facility revealed similar results. The mean velocities agree within 2% of the measured velocity magnitude. The differences in the measured velocity unsteadiness are similar to the case of a free jet. A reason for these discrepancies is in the different frequency response characteristics of probes used. It follows that the single-fiber probe has the slowest frequency response. In summary, the split-fiber probe worked reliably during the entire program. The acquired data averaged in time followed closely data acquired by conventional pneumatic probes. Despite small differences among all probes used, that still need to be explained, it is believed that data acquired by the split-fiber probe can be used reliably to analyze unsteady flow phenomena in the NASA Low Speed Axial Compressor.

Copyright © 2004 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In