0

Full Content is available to subscribers

Subscribe/Learn More  >

An Integrated Fault Diagnostics Model Using Genetic Algorithm and Neural Networks

[+] Author Affiliations
Suresh Sampath, Riti Singh

Cranfield University, Cranfield, Bedfordshire, UK

Paper No. GT2004-53914, pp. 749-758; 10 pages
doi:10.1115/GT2004-53914
From:
  • ASME Turbo Expo 2004: Power for Land, Sea, and Air
  • Volume 2: Turbo Expo 2004
  • Vienna, Austria, June 14–17, 2004
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 0-7918-4167-7 | eISBN: 0-7918-3739-4
  • Copyright © 2004 by ASME

abstract

This paper presents the development of an integrated fault diagnostics model for identifying shifts in component performance and sensor faults using Genetic Algorithm and Artificial Neural Network. The diagnostics model operates in two distinct stages. The first stage uses response surfaces for computing objective functions to increase the exploration potential of the search space while easing the computational burden. The second stage uses concept of a hybrid diagnostics model in which a nested neural network is used with genetic algorithm to form a hybrid diagnostics model. The nested neural network functions as a pre-processor or filter to reduce the number of fault classes to be explored by the genetic algorithm based diagnostics model. The hybrid model improves the accuracy, reliability and consistency of the results obtained. In addition significant improvements in the total run time have also been observed. The advanced cycle Intercooled Recuperated WR21 engine has been used as the test engine for implementing the diagnostics model.

Copyright © 2004 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In