Full Content is available to subscribers

Subscribe/Learn More  >

Digital Resistance-Map Generation for a Magnetorheological Damper Based Platform for Rehabilitation Applications

[+] Author Affiliations
Ehsan Asadi, Siamak Arzanpour

Simon Fraser University, Surrey, BC, Canada

Paper No. SMASIS2011-4952, pp. 525-530; 6 pages
  • ASME 2011 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
  • ASME 2011 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, Volume 1
  • Scottsdale, Arizona, USA, September 18–21, 2011
  • ISBN: 978-0-7918-5471-6
  • Copyright © 2011 by ASME


This paper introduces a methodology for generating digital resistance-map that can be utilized in an MR-Damper based robotic rehabilitation. Typically, in rehabilitation procedures, patients are getting involved in the recovery process of gradually training weak and damaged muscles by constraining motion in repetitive exercises. The whole purpose of robotic rehabilitation is to restrict body organ motion to the one prescribed by the therapist at the initial steps of treatment to avoid further damages to other weak muscles while focusing on recovering a particular muscle. MR-Dampers are semi-active actuators that can potentially be employed for this application. These dampers can be activated to produce high resistance to motion, and a platform that contains sufficient number of them can be manipulated to create regions of different resistance against motion. To apply this to the robotic rehabilitation, the motion recommended by the therapist should be converted to the resistance-maps that can be used by MR-Damper for implementation. To accomplish that, procedure of generating the digital resistance map is introduced and several digital resistance-maps are created. An MR-damper control methodology is also developed to activate the dampers. This controller relies on the accurate modeling of the MR-Damper. Bouc-Wen model is used for MR-Damper modeling. A 3-D platform containing three linear MR-Dampers is modeled using SimMechanics. 1-D and 2-D models are used to develop the idea and build up 3-D model. Several simulations are carried out to investigate the performance of the systems in generating the prescribed digital resistance-maps. The promising results of the simulations indicate that the method can be adopted for robotic rehabilitation purposes.

Copyright © 2011 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In