0

Full Content is available to subscribers

Subscribe/Learn More  >

Effects of Temperature Boundary Conditions on SMA Actuator Performance Using a Fully Coupled Thermomechanical Model

[+] Author Affiliations
Nicole Lewis, Stefan Seelecke

University of Saarland, Saarbrücken, Saarland,Germany

Paper No. SMASIS2011-5209, pp. 487-492; 6 pages
doi:10.1115/SMASIS2011-5209
From:
  • ASME 2011 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
  • ASME 2011 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, Volume 1
  • Scottsdale, Arizona, USA, September 18–21, 2011
  • ISBN: 978-0-7918-5471-6
  • Copyright © 2011 by ASME

abstract

The effects of temperature boundary conditions and the resulting performance of an SMA actuator were studied for an SMA wire coupled with a stiff spring. The wire was actuated via joule heating under both adiabatic and isothermal boundary conditions. The resulting temperature, phase fraction, strain and stress profiles along the wire were studied together with the wire tip displacement. The simulations were conducted using the finite element program ABAQUS, and a fully thermo-mechanically coupled shape memory alloy (SMA) actuator model was used to simulate the behavior. ABAQUS’s user material (UMAT) feature was utilized to model the SMA wire using a mesoscopic free energy model [1] in order to accurately describe the thermomechanically coupled actuator behavior. The results from the simulations highlighted the differences between homogeneous and inhomogeneous profiles, and a 34% difference in actuation stroke between the two cases was observed.

Copyright © 2011 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In