Full Content is available to subscribers

Subscribe/Learn More  >

Multi-Objective Design Optimization of a Shape Memory Alloy Actuated Robotic Catheter

[+] Author Affiliations
John H. Crews, Gregory D. Buckner

North Carolina State University, Raleigh, NC

Paper No. SMASIS2011-5037, pp. 381-389; 9 pages
  • ASME 2011 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
  • ASME 2011 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, Volume 1
  • Scottsdale, Arizona, USA, September 18–21, 2011
  • ISBN: 978-0-7918-5471-6
  • Copyright © 2011 by ASME


In this paper, we present a method for optimizing the design of a shape memory alloy (SMA) actuated robotic catheter. The robotic catheter is designed for use in endocardial ablation procedures, where “trackability” (bending flexibility) and “pushability” are desirable but conflicting catheter traits, leading to a multi-objective optimization problem. The catheter uses SMA tendons for internal actuation, which create a bending moment about a central structure. The design of SMA actuators is often non-intuitive and complicated due to the material’s hysteretic dependence on stress and temperature. The modeling and design difficulties increase when considering antagonistic SMA actuation, which is the case for the robotic catheter. The catheter is optimized using a genetic algorithm coupled with COMSOL Multiphysics Modeling and Simulation software. The objective functions are formulated in order to improve bending flexibility and pushability. Bending flexibility is quantified by radius of curvature. Pushability is a more subjective characteristic that depends on axial stiffness and friction, but for optimization purposes, it is quantified using axial stiffness and the surface area of the catheter. Several design variables that affect the catheter behavior are considered; these include the SMA tendon diameter and its pre-strain, the offset of the SMA tendon from the neutral axis of the central structure, and the central structure’s diameter and elastic modulus.

Copyright © 2011 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In