Full Content is available to subscribers

Subscribe/Learn More  >

Density Function Optimization for the Homogenized Energy Model of Shape Memory Alloys

[+] Author Affiliations
John H. Crews, Ralph C. Smith

North Carolina State University, Raleigh, NC

Paper No. SMASIS2011-5036, pp. 371-379; 9 pages
  • ASME 2011 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
  • ASME 2011 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, Volume 1
  • Scottsdale, Arizona, USA, September 18–21, 2011
  • ISBN: 978-0-7918-5471-6
  • Copyright © 2011 by ASME


In this paper, we present two methods for optimizing the density functions in the homogenized energy model (HEM) of shape memory alloys (SMA). The density functions incorporate the polycrystalline behavior of SMA by accounting for material inhomogeneities and localized interaction effects. One method represents the underlying densities for the relative stress and interaction stress as log-normal and normal probability density functions, respectively. The optimal parameters in the underlying densities are found using a genetic algorithm. A second method represents the densities as a linear parameterization of log-normal and normal probability density functions. The optimization algorithm determines the optimal weights of the underlying densities. For both cases, the macroscopic model is integrated over the localized constitutive behavior using these densities. In addition, the estimation of model parameters using experimental data is described. Both optimized models accurately and efficiently quantify the SMA’s hysteretic dependence on stress and temperature, making the model suitable for use in real-time control algorithms.

Copyright © 2011 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In