0

Full Content is available to subscribers

Subscribe/Learn More  >

Bending of Superelastic Shape Memory Alloy Tubes

[+] Author Affiliations
Benjamin Reedlunn, Christopher Churchill, Emily Nelson, Samantha Daly, John Shaw

University of Michigan, Ann Arbor, MI

Paper No. SMASIS2011-4906, pp. 249-258; 10 pages
doi:10.1115/SMASIS2011-4906
From:
  • ASME 2011 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
  • ASME 2011 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, Volume 1
  • Scottsdale, Arizona, USA, September 18–21, 2011
  • ISBN: 978-0-7918-5471-6
  • Copyright © 2011 by ASME

abstract

Many shape memory alloy (SMA) applications exploit superelasticity in a bending mode, yet the large displacements and rotations associated with bending of slender structures make controlled experiments difficult. A custom pure bending fixture was built to perform experiments on superelastic NiTi tubes. To understand the bending results, the tubes were also characterized in uniaxial tension and compression, where a custom fixture was utilized to avoid buckling. In addition to measuring the global mechanical response, stereo digital image correlation (DIC) was used in all the experiments to capture the local surface displacement and strain fields. Consistent with the tension/compression data, our bending experiments showed a significant shift of the neutral axis towards the compression side. Also, the tube had strain localization on the tension side, but no such localization on the compression side. Detailed analysis of the strain distribution across the tube diameter revealed that the usual assumption of beam theory, that plane sections remain plane, did not hold along the tension side. Averaged over a few diameters of gage length, plane sections remain plane is a reasonable assumption and can be used to predict the global moment–curvature response. However, this assumption should be used with caution since it can under/over predict local strains by as much as 2× due to the localized deformation morphology.

Copyright © 2011 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In