0

Full Content is available to subscribers

Subscribe/Learn More  >

Sensitivity Testing Revisited: The Case of Sol-Gel Transition

[+] Author Affiliations
Federica Omegna, Gianfranco Genta, Emanuele M. Barini, Daniele L. Marchisio, Raffaello Levi

Politecnico di Torino, Torino, Italy

Paper No. ESDA2008-59091, pp. 555-561; 7 pages
doi:10.1115/ESDA2008-59091
From:
  • ASME 2008 9th Biennial Conference on Engineering Systems Design and Analysis
  • Volume 4: Fatigue and Fracture; Fluids Engineering; Heat Transfer; Mechatronics; Micro and Nano Technology; Optical Engineering; Robotics; Systems Engineering; Industrial Applications
  • Haifa, Israel, July 7–9, 2008
  • Conference Sponsors: International
  • ISBN: 978-0-7918-4838-8 | eISBN: 0-7918-3827-7
  • Copyright © 2008 by ASME

abstract

Classical sensitivity testing addresses mainly problems where the level of one stimulus only governs an abrupt transition in output, or response. Both parametric and nonparametric methods developed, and successfully applied over last century to tackle such problems, provide estimates of critical levels beyond which an item will either respond, or not, to a single stimulus, and of related statistics. However classical methods sometimes may not readily provide an answer, namely when more than one stimulus may reach critical level, and either singularly or jointly trigger transition. Factorial and response surface designs, adequate when dealing with continuous responses, may not perform as well for transition threshold estimation. A practical case at hand in chemical engineering concerns the production, through hydrolysis of a specific precursor, of titania sols and gels that find industrial use as additive for paints, concrete and other building materials due to its optical, photo-catalytic and super-hydrophilic properties. Particles formation and aggregation — controlled by varying the primary process parameters, namely initial alkoxide concentration, water to alkoxide and acid to alkoxide ratios, mixing conditions — may yield either stable, transparent nanometric sols, or monolithic gels, where aggregation of nanometric particles produces a final ceramic object. Depending on the application, one of the two products may be desirable, and therefore it is crucial to control the final product properties. Aggregation kinetics and physical properties of sols, and sol to gel transition, were found to depend strongly upon several factors, that is water to alkoxide initial concentration ratio, acid to alkoxide initial concentration ratio, and their interaction. The approach developed in order to estimate parameters pertaining to transition, and related uncertainty, is presented in the paper, and discussed in the light of experimental results.

Copyright © 2008 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In