Full Content is available to subscribers

Subscribe/Learn More  >

Comparison Between Traditional Microchannels Heat Sinks and Microchannels Heat Sinks Based on Biomimical Tendencies

[+] Author Affiliations
Carlos A. Rubio-Jimenez, Abel Hernandez-Guerrero, Cuauhtemoc Rubio-Arana

Universidad de Guanajuato, Salamanca, Guanajuato, México

Daniela Popescu

Technical University of Iasi, Iasi, Romania

Paper No. ESDA2008-59436, pp. 337-344; 8 pages
  • ASME 2008 9th Biennial Conference on Engineering Systems Design and Analysis
  • Volume 4: Fatigue and Fracture; Fluids Engineering; Heat Transfer; Mechatronics; Micro and Nano Technology; Optical Engineering; Robotics; Systems Engineering; Industrial Applications
  • Haifa, Israel, July 7–9, 2008
  • Conference Sponsors: International
  • ISBN: 978-0-7918-4838-8 | eISBN: 0-7918-3827-7
  • Copyright © 2008 by ASME


In the last few years high-tendency electronic devices have improved to a larger processing capability with smaller physical dimensions. This fact coupled to traditional cooling mechanisms, are not able to dissipate the high heat fluxes generated by these devices (around 200 W/cm2 .) Microchannel heat sinks are the new tendency in heat dissipation. Many of the studies done before had used single-phase water as cooling fluid in laminar flow. Operating within this regimen, and using water as the cooling fluid, the dissipated heat flux is not enough to keep optimal operational conditions in the electronic devices. Therefore, this work presents a thermal and hydraulic numerical analysis for a microchannel heat sink with circular cross section, fabricated in a silicon substrate. The channel cross section is variable, being a function of the heat sink longitudinal position, decreasing as the cooling fluid passes through the channel. The ratio between the inlet and outlet diameters is given as a function of the Biomimic tendency. These theories are based on the behavior that nature has for the mass transport in circular ducts. The cooling fluid used in this study is water in single-phase. These microchannels heat sink arrangements are based in the operational and geometrical parameters of previous works developed by several authors on microchannels heat sinks with constant and conventional cross sections.

Copyright © 2008 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In