Full Content is available to subscribers

Subscribe/Learn More  >

Pull-In Dynamics of Variable-Width Electrostatic Microactuators

[+] Author Affiliations
Manish M. Joglekar, Dnyanesh N. Pawaskar

Indian Institute of Technology-Bombay, Mumbai, India

Paper No. ESDA2008-59328, pp. 327-335; 9 pages
  • ASME 2008 9th Biennial Conference on Engineering Systems Design and Analysis
  • Volume 4: Fatigue and Fracture; Fluids Engineering; Heat Transfer; Mechatronics; Micro and Nano Technology; Optical Engineering; Robotics; Systems Engineering; Industrial Applications
  • Haifa, Israel, July 7–9, 2008
  • Conference Sponsors: International
  • ISBN: 978-0-7918-4838-8 | eISBN: 0-7918-3827-7
  • Copyright © 2008 by ASME


Determination of pull-in parameters is vital in the design of electrostatically actuated microdevices. Moreover, it is important to devise some means to gain a control over the pull-in parameters in order to establish the customized microactuator design practice. In this paper, we analyze the influence of the beam geometry on the dynamic pull-in parameters of electrostatically actuated microbeams. Novel width functions are proposed for the microcantilever and the fixed-fixed beam, which smoothly vary the width of the microbeam along its length. We demonstrate the use of these width-functions by comparing six different microbeam geometries, three for cantilevered beam and three for fixed-fixed beam along with their constant width rectangular counterparts. All configurations are analyzed using an energy technique which gives an upper bound on the critical amplitude of the microbeam displacement, which is subsequently used to extract a lower bound on the applied voltage at the point of dynamic pull-in instability. For every case, a comparison is made between the static and the dynamic pull-in parameters. Results indicate a greater pull-in range for concave beam geometries, while the convex geometries exhibit a reduction in the pull-in range. Actuation voltage requirement is found to be proportional to the increase in the travel range. In all cases, the dynamic pull-in displacement is found to be greater than the static pull-in displacement, while the dynamic pull-in voltage is found to be less than the static pull-in voltage.

Copyright © 2008 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In