0

Full Content is available to subscribers

Subscribe/Learn More  >

Development of Actual TBC Exposure Temperature Prediction Method

[+] Author Affiliations
Masahiko Morinaga, Tomoharu Fujii

Central Research Institute of Electric Power Industry, Yokosuka, Kanagawa, Japan

Takeshi Takahashi

Central Research Institute of Electric Power Industry, Tokyo, Japan

Paper No. GT2004-53267, pp. 521-526; 6 pages
doi:10.1115/GT2004-53267
From:
  • ASME Turbo Expo 2004: Power for Land, Sea, and Air
  • Volume 2: Turbo Expo 2004
  • Vienna, Austria, June 14–17, 2004
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 0-7918-4167-7 | eISBN: 0-7918-3739-4
  • Copyright © 2004 by ASME

abstract

Gas turbines are being operated at ever-higher temperatures in order to increase their efficiency. As a result, thermal barrier technology to protect the gas turbine hot gas path parts from high-temperature combustion gas is becoming increasingly important, making it necessary to evaluate the thermal barrier performance of the thermal barrier coating (TBC) coated on these gas turbine hot gas path parts. Thermal barrier performance of the TBC deteriorates with the number of operating hours of the gas turbine. The degradation of TBC thermal barrier performance raises substrate temperature, and this rise in substrate temperature reduces the remaining life of the substrate. We proposed an effective nondestructive inspection (NDI) method to evaluate the thermal barrier performance of the TBC by infrared transient heating of the TBC surface. The temperature behavior closely correlated with the thermal barrier performance of the TBC. The results of numerical analysis and laboratory tests showed that the proposed NDI method was effective for evaluating the thermal barrier performance of TBC. So we developed NDI apparatus to inspect the thermal barrier performance of actual combustion liner TBC. In this NDI apparatus, the surface of the TBC was heated using a CO2 laser, and the temperature of the heated surface measured using an infrared camera. The CO2 laser and infrared camera were fixed, while the measured combustion liner was traversed continuously. The NDI apparatus developed enabled us to inspect the whole inner surface of an actual gas turbine combustion liner. We also showed the correlation with thermal conductivity of a virgin TBC, thermal conductivity of an inspected TBC, operating hours and TBC exposure temperature in our TBC thermophysical property study. The combination of this method and the NDI apparatus developed proved an effective way of clarifying the operating temperature of the hot gas path parts of the gas turbine. In this paper, we show a method for predicting actual gas turbine TBC exposure temperature, important when evaluating the remaining life of gas turbine substrate by the NDI apparatus developed and method of predicting TBC exposure temperature.

Copyright © 2004 by ASME
Topics: Temperature

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In