0

Full Content is available to subscribers

Subscribe/Learn More  >

A Quasi-Normal Scale Elimination Theory of Turbulent Flows With Stable Stratification

[+] Author Affiliations
Semion Sukoriansky

Ben-Gurion University of the Negev, Beer-Sheva, Israel

Boris Galperin

University of South Florida, St. Petersburg, FL

Paper No. ESDA2008-59149, pp. 179-183; 5 pages
doi:10.1115/ESDA2008-59149
From:
  • ASME 2008 9th Biennial Conference on Engineering Systems Design and Analysis
  • Volume 4: Fatigue and Fracture; Fluids Engineering; Heat Transfer; Mechatronics; Micro and Nano Technology; Optical Engineering; Robotics; Systems Engineering; Industrial Applications
  • Haifa, Israel, July 7–9, 2008
  • Conference Sponsors: International
  • ISBN: 978-0-7918-4838-8 | eISBN: 0-7918-3827-7
  • Copyright © 2008 by ASME

abstract

The Quasi-Normal Scale Elimination (QNSE) theory is a second order spectral closure capable of dealing with host of complicated factors introduced by nonlinearity and stable stratification. The theory is based upon a mapping of the actual velocity field to a quasi-Gaussian field whose modes are governed by the Langevin equation. The parameters of the mapping are calculated using a systematic process of successive averaging over small shells of velocity and temperature modes that eliminates them from the momentum and temperature equations. Turbulence and waves are treated as one entity and the effect of waves is easily identifiable. The model shows that there exists a range of Richardson numbers, between, approximately, 0.1 and 1, in which turbulence and heat transfer undergo remarkable anisotropization; the vertical mixing becomes suppressed while the horizontal mixing is enhanced. The theory yields analytical expressions for various 1D and 3D kinetic and potential energy spectra that reflect the effects of waves and anisotropy. The model’s results are suitable for immediate use in practical applications. Partial scale elimination gives sub-grid-scale viscosities and diffusivities that can be used in large eddy simulations. The elimination of all fluctuating scales results in RANS models.

Copyright © 2008 by ASME
Topics: Turbulence

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In