0

Full Content is available to subscribers

Subscribe/Learn More  >

Three-Dimensional Stress Intensity Factors for Arrays of Radial Cracks Emanating From the Inner Surface of a Thick-Walled Spherical Pressure Vessel

[+] Author Affiliations
M. Perl, V. Bernstein

Ben-Gurion University of the Negev, Beer-Sheva, Israel

Paper No. ESDA2008-59158, pp. 23-32; 10 pages
doi:10.1115/ESDA2008-59158
From:
  • ASME 2008 9th Biennial Conference on Engineering Systems Design and Analysis
  • Volume 4: Fatigue and Fracture; Fluids Engineering; Heat Transfer; Mechatronics; Micro and Nano Technology; Optical Engineering; Robotics; Systems Engineering; Industrial Applications
  • Haifa, Israel, July 7–9, 2008
  • Conference Sponsors: International
  • ISBN: 978-0-7918-4838-8 | eISBN: 0-7918-3827-7
  • Copyright © 2008 by ASME

abstract

Some spherical pressure vessels are manufactured by methods such as the Integrated Hydro-Bulge Forming (IHBF) method, where the sphere is composed of a series of double curved petals welded along their meridional lines. Such vessels are susceptible to multiple radial cracking along the welds. For fatigue life assessment and fracture endurance of such vessels one needs to evaluate the Stress Intensity Factors SIF distribution along the fronts of these cracks. However, to date, only two-dimensional SIFs for one through the thickness crack in a thin spherical shells is available. In the present paper, mode I SIF distributions for a wide range of lunular and crescentic cracks are evaluated. The 3-D analysis is performed, via the FE method employing singular elements along the crack front, for three sphere geometries with outer to inner radius ratios of η = Ro /Ri = 1.1, 1.7, and 2.0. SIFs are evaluated for arrays containing n = 1–20 cracks,; for a wide range of crack depth to wall thickness ratio, a/t, from 0.025 to 0.8; and for various ellipticities of the crack, i.e., the ratio of crack depth to semi crack length, a/c, from 0.2 to 1.5. The obtained results clearly indicate that the SIFs are considerably affected by the three-dimensionality of the problem and by the geometrical parameters: the geometry of the sphere – η, the number of cracks in the array – n, the depth of the crack – a/t, and its ellipticity – a/c.

Copyright © 2008 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In