0

Full Content is available to subscribers

Subscribe/Learn More  >

Improvement of Rolling Contact Fatigue Life by a Preliminary Loading in Elastic-Plastic Domain

[+] Author Affiliations
Spiridon Cretu

Technical University of Iasi, Iasi, Romania

Paper No. ESDA2008-59137, pp. 11-21; 11 pages
doi:10.1115/ESDA2008-59137
From:
  • ASME 2008 9th Biennial Conference on Engineering Systems Design and Analysis
  • Volume 4: Fatigue and Fracture; Fluids Engineering; Heat Transfer; Mechatronics; Micro and Nano Technology; Optical Engineering; Robotics; Systems Engineering; Industrial Applications
  • Haifa, Israel, July 7–9, 2008
  • Conference Sponsors: International
  • ISBN: 978-0-7918-4838-8 | eISBN: 0-7918-3827-7
  • Copyright © 2008 by ASME

abstract

An analysis model has been developed to model the nonlinear strain rate dependent deformation of rolling bearing steel stressed in the elastic-plastic domain. The model is developed in the frame of the incremental theory of plasticity by using the von Mises yield criterion and Prandtl-Reuss equations. By considering the isotropic and non-linear kinematic hardening laws of Lemaitre-Caboche, the model accounts for the cyclic hardening phenomena. To attain the final load of each loading cycle, the two bodies are brought into contact incrementally. For each new load increment new increments for the components of stress and strain tensors, but also increments of residual stresses, are computed for each point of the 3D mesh. Both, the new contact geometry and residual stresses distributions, are further considered as initial values for the next loading cycle, the incremental technique being reiterated. The cyclic evaluation process of both, plastic strains and residual stresses is performed until the material shakedowns. The experimental part of the paper regards to the rolling contact fatigue tests carried out on two groups of line contact test specimens and on two groups of deep groove ball bearings. In both cases, the experimental data reveal more than two times greater fatigue life for the group with induced residual stresses versus the life of the reference group. The von Mises equivalent stress is considered in Ioannides-Harris rolling contact fatigue model to obtain theoretical lives. The theoretical analysis revealed greater fatigue lives for the test specimens and for the ball bearings groups with induced residual stresses than the fatigue lives of the corresponding reference groups.

Copyright © 2008 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In