Full Content is available to subscribers

Subscribe/Learn More  >

Fatigue Life Prediction in Rapid Die Casting

[+] Author Affiliations
Chuan Huat Ng

Universiti Tun Hussein Onn Malaysia, Batu Pahat, Johor, Malaysia

Karl-Heinrich Grote, Rüdiger Bähr

Otto Von Guericke University Magdeburg, Magdeburg, Germany

Paper No. ESDA2008-59123, pp. 1-10; 10 pages
  • ASME 2008 9th Biennial Conference on Engineering Systems Design and Analysis
  • Volume 4: Fatigue and Fracture; Fluids Engineering; Heat Transfer; Mechatronics; Micro and Nano Technology; Optical Engineering; Robotics; Systems Engineering; Industrial Applications
  • Haifa, Israel, July 7–9, 2008
  • Conference Sponsors: International
  • ISBN: 978-0-7918-4838-8 | eISBN: 0-7918-3827-7
  • Copyright © 2008 by ASME


During a die casting process, it is very difficult to achieve efficient and correct casting tooling endurance results by the casting designer and foundry man. However, it is very costly and time consuming to predict the tooling endurance with a trial and error method based on expertise and experience. After an extensive fatigue design study, it was possible to develop specimen design models for the simulation of the time and temperature dependent stress-strain and fracture models to determine the thermal fatigue prediction. In this research, stress-strain approach, heat transfer concept and life time calculation methods were used to predict the casting tool endurance by a computer simulation. The thermal stress and heat transfer behaviour analysis were performed using RWP casting numerical simulation software. It is shown that numerical simulation techniques can simulate stress concentration on the specimen surface to thermal behaviour. Furthermore, the result from the specimen based simulation model associated with fracture indicators permits the construction of a life time design curve independent of time and temperature. The fatigue life predicted by simulation based models and the results from experimental testing on real components are very similar. The simulation results showed that they match the experimental results, including a design safety factor.

Copyright © 2008 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In