Full Content is available to subscribers

Subscribe/Learn More  >

Friction of Rubber Wheels on Wet Asphalt Surfaces

[+] Author Affiliations
Noamen Bouzid, Bodo Heimann

Leibniz University of Hannover, Hannover, Germany

Paper No. ESDA2008-59445, pp. 535-540; 6 pages
  • ASME 2008 9th Biennial Conference on Engineering Systems Design and Analysis
  • Volume 3: Design; Tribology; Education
  • Haifa, Israel, July 7–9, 2008
  • Conference Sponsors: International
  • ISBN: 978-0-7918-4837-1 | eISBN: 0-7918-3827-7
  • Copyright © 2008 by ASME


A reliable online prognosis of the grip between tire and road is a feature with a big potential for further improvements of the automotive safety. Existing grip potential prognosis systems for wet conditions are able only to describe the hydrodynamic decrease of friction at high speeds which depends on vehicle velocity, water film thickness and drainage properties both of the road surface and the tire. The present work deals with the friction at low speeds which depends on the road micro roughness. The experimental investigations are done in laboratory using a small solid rubber wheel and several asphalt samples. All parameters possibly influencing the friction process are varied. The influence of the test surface is found to be related to the micro texture and to be independent of any other parameters.

Copyright © 2008 by ASME
Topics: Friction , Rubber , Asphalt , Wheels



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In