Full Content is available to subscribers

Subscribe/Learn More  >

Turbine Blade Surface Deterioration by Erosion

[+] Author Affiliations
Awatef A. Hamed, Widen Tabakoff, Kaushik Das, Puneet Arora

University of Cincinnati, Cincinnati, OH

Richard B. Rivir

U.S. Air Force Research Laboratory, Wright-Patterson AFB, OH

Paper No. GT2004-54328, pp. 329-337; 9 pages
  • ASME Turbo Expo 2004: Power for Land, Sea, and Air
  • Volume 2: Turbo Expo 2004
  • Vienna, Austria, June 14–17, 2004
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 0-7918-4167-7 | eISBN: 0-7918-3739-4
  • Copyright © 2004 by ASME


This paper presents the results of a combined experimental and computational research program to investigate turbine vane and blade material surface deterioration caused by solid particle impacts. Tests are conducted in the erosion wind tunnel for coated and uncoated blade materials at various impact conditions. Surface roughness measurements obtained prior and subsequent to the erosion tests are used to characterize the change in roughness caused by erosion. Numerical simulations for the three dimensional flow field and particle trajectories through a low pressure gas turbine are employed to determine the particle impact conditions with stator vanes and rotor blades using experimentally-based particle restitution models. Experimental results are presented for the measured blade material/coating erosion and surface roughness. The measurements indicate that both erosion and surface roughness increase with impact angle and particle size. Computational results are presented for the particle trajectories though the first stage of a low-pressure turbine of a high bypass turbofan engine. The trajectories indicate that the particles impact the vane pressure surface and the aft part of the suction surface. The impacts reduce the particle momentum through the stator but increase it through the rotor. Vane and blade surface erosion patterns are predicted based on the computed trajectories and the experimentally measured blade coating erosion characteristics.

Copyright © 2004 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In