Full Content is available to subscribers

Subscribe/Learn More  >

Analytical Prediction of the Transition to Chaos in Lorenz System

[+] Author Affiliations
Peter Vadasz

Northern Arizona University, Flagstaff, AZ; University of KwaZulu-Natal, Durban, South Africa

Paper No. ESDA2008-59568, pp. 799-803; 5 pages
  • ASME 2008 9th Biennial Conference on Engineering Systems Design and Analysis
  • Volume 2: Automotive Systems; Bioengineering and Biomedical Technology; Computational Mechanics; Controls; Dynamical Systems
  • Haifa, Israel, July 7–9, 2008
  • Conference Sponsors: International
  • ISBN: 978-0-7918-4836-4 | eISBN: 0-7918-3827-7
  • Copyright © 2008 by ASME


The failure of the linear stability analysis to predict accurately the transition point from steady to chaotic solutions in Lorenz equations motivates this study. A weak non-linear solution to the problem is shown to produce an accurate analytical expression for the transition point as long as the validity condition and consequent accuracy of the latter solution is fulfilled. The analytical results are compared to accurate computational solutions showing an excellent fit within the validity domain of the analytical solution.

Copyright © 2008 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In