0

Full Content is available to subscribers

Subscribe/Learn More  >

Analysis on Impact Loading at Rail Welds at High Speed

[+] Author Affiliations
Guangwen Xiao, Xinbiao Xiao, Zefeng Wen, Xuesong Jin

Southwest Jiaotong University, Chengdu, China

Paper No. ESDA2008-59383, pp. 719-728; 10 pages
doi:10.1115/ESDA2008-59383
From:
  • ASME 2008 9th Biennial Conference on Engineering Systems Design and Analysis
  • Volume 2: Automotive Systems; Bioengineering and Biomedical Technology; Computational Mechanics; Controls; Dynamical Systems
  • Haifa, Israel, July 7–9, 2008
  • Conference Sponsors: International
  • ISBN: 978-0-7918-4836-4 | eISBN: 0-7918-3827-7
  • Copyright © 2008 by ASME

abstract

When a railway vehicle passes through a track with different weld irregularities at high speed, the impact loading of the vehicle coupled with the track is investigated in detail using a coupled vehicle/track model. In this model, a half vehicle is considered and modeled as a multi-body system. In the track model, a Timoshenko beam resting on discrete sleepers is applied to model each rail. Each sleeper is modeled as a rigid body accounting for its vertical, lateral, roll motions. A moving sleeper support model is used to simulate the interaction of the vehicle and the track. The ballast bed is replaced with equivalent masses. The equivalent dampers and springs are used to replace the connections between the parts of the vehicle and track. In calculating the coupled vehicle and track dynamics, Hertzian contact theory and the creep force theory by Shen et al. are, respectively, used to calculate the normal forces and the creep forces between the wheels and the rails. The motion equations of the vehicle-track are solved by means of an explicit integration method. The weld rail irregularity is modeled by setting a local track vertical deviation at a rail weld joint, which is described with a simplified cosine function. In the numerical analysis the effect of the different wavelength, depth, the position of the welded joint in a sleeper span, and vehicle speed is taken into account. The numerical results obtained are greatly useful in the tolerance design of welded rail profile irregularity caused by damage and hand-grinding after rail welding.

Copyright © 2008 by ASME
Topics: Welded joints , Rails

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In