0

Full Content is available to subscribers

Subscribe/Learn More  >

Effectiveness of a Serpentine Inlet Duct Flow Control Technique at Design and Off-Design Simulated Flight Conditions

[+] Author Affiliations
Angie Rabe, Wing Ng, Ricardo Burdisso

Virginia Polytechnic Institute and State University, Blacksburg, VA

Paper No. GT2004-53475, pp. 139-148; 10 pages
doi:10.1115/GT2004-53475
From:
  • ASME Turbo Expo 2004: Power for Land, Sea, and Air
  • Volume 2: Turbo Expo 2004
  • Vienna, Austria, June 14–17, 2004
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 0-7918-4167-7 | eISBN: 0-7918-3739-4
  • Copyright © 2004 by ASME

abstract

An experimental investigation was conducted in a static ground test facility to determine the effectiveness of a serpentine inlet duct active flow control technique for two simulated flight conditions. The experiments used a scaled model of a compact, diffusing, serpentine, engine inlet duct developed by Lockheed Martin with a flow control technique using air injection through microjets at 1% of the inlet mass flow rate. The experimental results, in the form of total pressure measurements at the exit of the inlet, were used to predict the stability of a compression system through a parallel compressor model. The inlet duct was tested at cruise condition and angle of attack flight cases to determine the change in inlet performance due to flow control at different flight conditions. The experiments were run at an inlet throat Mach number of 0.55 and a resulting Reynolds number, based on the hydraulic diameter at the inlet throat, of 1.76*105 . For both of the flight conditions tested, the flow control technique was found to reduce inlet distortion at the exit of the inlet by as much as 70% while increasing total pressure recovery by as much as 2%. The inlet total pressure profile was input in a parallel compressor model to predict the changes in stability margin of a compression system due to flow control for design and off-design flight conditions. Without flow control, both cases show a reduction in stability margin of 70%. With the addition of flow control, each case was able to recover a significant portion (up to 55%) of the undistorted stability margin. This flow control technique has improved the operating range of a compression system as compared to the same inlet duct without flow control.

Copyright © 2004 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In