0

Full Content is available to subscribers

Subscribe/Learn More  >

Performance Evaluation of Hybrid (Ceramic on Steel) Bearings With Advanced Aircraft Engine Oils for Lubrication

[+] Author Affiliations
L. Wang, R. J. K. Wood

University of Southampton, Southampton, UK

H. E. G. Powrie

Smiths Aerospace Electronic Systems, Chandlers Ford, Hampshire, UK

E. Streit

FAG, Schweinfurt, Germany

I. Care

Rolls-Royce plc, Derby, UK

Paper No. GT2004-53418, pp. 117-126; 10 pages
doi:10.1115/GT2004-53418
From:
  • ASME Turbo Expo 2004: Power for Land, Sea, and Air
  • Volume 2: Turbo Expo 2004
  • Vienna, Austria, June 14–17, 2004
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 0-7918-4167-7 | eISBN: 0-7918-3739-4
  • Copyright © 2004 by ASME

abstract

Hybrid bearings (silicon nitride rolling elements and steel raceways) are being developed for the new generation of gas turbine engines, as they offer weight savings, reduced heat rejection and can operate at higher DN (bore diameter in mm × shaft rotational speed in rpm) values than conventional steel bearings. In the present study, various advanced synthetic aviation oils were tested on a pin-on-disc tribometer. Conditions were chosen to simulate engine low load and ambient start up, where sliding is a factor. The tests used a silicon nitride ball sliding against an M50NiL bearing steel disc. Fresh oils were tested for the hybrid contacts under high sliding speed of 7 ms−1 and normal aircraft engine bearing contact pressure of 2.8 GPa [1]. The results showed that most of the synthetic aviation oils in use today would provide similar protection for the hybrid contacts against scuffing. Initial studies, aimed at identifying the influence of oil degradation and effects of additive depletion are also presented. The oils were ranked based on the contact wear rate. Electrostatic charge measurements were made along with wear, friction and surface temperature measurements to monitor the on-line wear conditions [2–3]. Electrostatic sensing shows promise as a monitoring technique for oil lubricated hybrid contacts. Polishing wear mechanisms and iron-based material transfer from disc to ball were identified by Field Emission Gun Scanning Electron Microscopy (FEG-SEM) and Energy-Dispersive X-ray (EDX) as the dominant degradation process in these hybrid contacts.

Copyright © 2004 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In