0

Full Content is available to subscribers

Subscribe/Learn More  >

Decomposition and Analysis of Non-Stationary Dynamic Signals Using the Hilbert Transform

[+] Author Affiliations
Michael Feldman

Technion-Israel Institute of Technology, Haifa, Israel

Paper No. ESDA2008-59201, pp. 585-589; 5 pages
doi:10.1115/ESDA2008-59201
From:
  • ASME 2008 9th Biennial Conference on Engineering Systems Design and Analysis
  • Volume 2: Automotive Systems; Bioengineering and Biomedical Technology; Computational Mechanics; Controls; Dynamical Systems
  • Haifa, Israel, July 7–9, 2008
  • Conference Sponsors: International
  • ISBN: 978-0-7918-4836-4 | eISBN: 0-7918-3827-7
  • Copyright © 2008 by ASME

abstract

This paper describes a new technique, called the Hilbert Vibration Decomposition method, dedicated to decomposition of non-stationary wideband dynamic signals. Using the Hilbert transform in the time domain, we extract a number of elementary oscillating components of the initial signal, who’s both the instantaneous frequency and envelope can vary in time. Modeling examples of decomposition of non-stationary signals are included.

Copyright © 2008 by ASME
Topics: Signals

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In