Full Content is available to subscribers

Subscribe/Learn More  >

The Use of CFD for the Thermal Analysis of a High Pressure Compressor Rotor

[+] Author Affiliations
U. W. Ruedel, J. R. Turner

ALSTOM Power Technology Centre, Whetstone, Leicestershire, UK

Paper No. GT2004-53079, pp. 45-53; 9 pages
  • ASME Turbo Expo 2004: Power for Land, Sea, and Air
  • Volume 2: Turbo Expo 2004
  • Vienna, Austria, June 14–17, 2004
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 0-7918-4167-7 | eISBN: 0-7918-3739-4
  • Copyright © 2004 by ASME


The prediction of fatigue life of components inside aircraft engines depends on the reliable numerical modelling of the temperature distribution during a mission cycle as this gives rise to life limiting thermal stresses. The transient temperature distribution is usually measured during an engine test and is then used to validate the numerical model, which in turn produces the basis for calculating the thermal stress levels. This paper describes the thermal analysis of a High Pressure Compressor Rotor (HPCR) and how the use of a 3-D Computational Fluid Dynamic (CFD) analysis improved the quantitative agreement between the measured and the predicted temperature profiles. The highly complex three-dimensional flow field within the compressor rotor was modelled by exploiting symmetry conditions and using a standard k-ε turbulence model. Results of the tangential, axial and radial velocity components as well as locations of peaks in turbulence kinetic energy were predicted to help identify the flow field inside the forward cavity of the rotor. Two ways of predicting internal re-circulating rates to the rim area are proposed. Finally, plots of predicted metal temperature profiles before and after the CFD-analysis are presented.

Copyright © 2004 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In