0

Full Content is available to subscribers

Subscribe/Learn More  >

Computer Simulation and Optimisation of Tissue Engineering Scaffolds: Mechanical and Vascular Behaviour

[+] Author Affiliations
Henrique A. Almeida, Paulo J. Bártolo

Leiria Polytechnic Institute, Leiria, Portugal

Paper No. ESDA2008-59460, pp. 173-180; 8 pages
doi:10.1115/ESDA2008-59460
From:
  • ASME 2008 9th Biennial Conference on Engineering Systems Design and Analysis
  • Volume 2: Automotive Systems; Bioengineering and Biomedical Technology; Computational Mechanics; Controls; Dynamical Systems
  • Haifa, Israel, July 7–9, 2008
  • Conference Sponsors: International
  • ISBN: 978-0-7918-4836-4 | eISBN: 0-7918-3827-7
  • Copyright © 2008 by ASME

abstract

Additive biomanufacturing processes are increasingly recognised as ideal techniques to produce scaffolds for tissue engineering applications. These scaffolds must be biocompatible, biodegradable, with appropriate porosity, pore structure and pore distribution and optimal vascularisation, with both surface and structural compatibility. Surface compatibility means a chemical, biological and physical suitability to the host tissue. Structural compatibility corresponds to an optimal adaptation to the mechanical behaviour of the host tissue. Recent advances in tissue engineering field are increasingly relying on modelling and simulation. This paper proposes a novel computational tool combining structural, computational fluid dynamics and topological optimisation schemes, to predict and optimise both mechanical and vascular behaviour of scaffolds for soft and hard tissue applications, with different topological architectures and levels of porosity. This tool is particularly important to quantify the structural heterogeneity and scaffold mechanical properties with a designed microstructure subjected to either a single or a multiple load distribution. This computational tool enables the simulation of biological flows in vascular passages of scaffolds. The blood flow considered in this study is a complex fluid comprising a suspension of red blood cells, white blood cells and platelets within a newtonian plasma. A topological optimisation scheme is being developed to obtain the ideal scaffold topological architectures.

Copyright © 2008 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In