Full Content is available to subscribers

Subscribe/Learn More  >

Optimizing Limb Lengthening Using an Autodistractor and Force Measurement

[+] Author Affiliations
Jinyong Wee, Rahamim Seliktar

Drexel University, Philadelphia, PA

Tariq Rahman, William G. Mackenzie, Robert Akins, George R. Dodge

duPont Hospital for Children, Wilmington, DE

David Levine, Dean W. Richardson

University of Pennsylvania School of Veterinary Medicine, Kennett Square, PA

Paper No. ESDA2008-59448, pp. 167-172; 6 pages
  • ASME 2008 9th Biennial Conference on Engineering Systems Design and Analysis
  • Volume 2: Automotive Systems; Bioengineering and Biomedical Technology; Computational Mechanics; Controls; Dynamical Systems
  • Haifa, Israel, July 7–9, 2008
  • Conference Sponsors: International
  • ISBN: 978-0-7918-4836-4 | eISBN: 0-7918-3827-7
  • Copyright © 2008 by ASME


The procedure of limb lengthening is a common method for correcting limb length inequality. The lengthening procedure, however, can result in serious complications such as premature consolidation of bone and soft-tissue contractures. To avoid adverse effects, it is important to determine the safe limits of the lengthening procedure in terms of forces applied, rate of distraction, overall length added and effects of the procedure on associated tissue. In this study, we investigate the relationship between distraction speed and callus formation in the fracture gap and how this affects the distraction resisting force (DRF) and muscle adaptation. A new distraction system was designed to continuously measure the DRF during tibial lengthening using a unilateral fixator. Measurements were made in 2 sheep for 51 days and 38 days respectively. The first sheep acquired 5cm (25% of its original length) of new bone with various rates of distraction. The second sheep acquired 3.8cm (15% of its original length) of new bone with 1mm/day fixed rate of distraction. During the lengthening procedure, the DRF steadily increased as the callus was being formed in the distraction gap. In sheep1 the lengthening rate was increased from 1mm/day to 1.25mm/day at the lengthening day 36 to manage what was interpreted to be signs of early premature consolidation. The DRF decreased to 310N from 400N at the lengthening day 43. Radiographs taken at day 43 showed separation in the callus. During the 1.25mm/day lengthening the sheep lost ankle joint movement completely. The major muscles, long digital extensor (LDE), cranial tibial (CT), gastrocnemius and deep digital flexor (DDF) were collected from the operated and non-operated hind limbs. The result showed that LDE and CT were damaged while gastrocnemius and DDF were intact. In sheep2, the distraction rate was maintained at 1mm/day and it showed a similar increase of DRF up to 550N at the end of distraction (lengthening day 38). There was no visible joint restriction observed. None of the four muscles collected showed signs of the profound tissue damage noted in sheep1. Comparison of the DRF profile with radiological interpretation confirmed that the degree of callus formation was appropriate at DRF of 300 ∼ 500N. Additionally the ability of the muscle to adapt to the given length could be affected by the time when the rate was changed. Additional studies are underway to determine the optimal regimen including appropriate rates and forces.

Copyright © 2008 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In