0

Full Content is available to subscribers

Subscribe/Learn More  >

The SciMED RADIUS™ Stent-Artery Interaction

[+] Author Affiliations
Moshe Brand

Ariel University Center of Samaria, Ariel, Israel

Michael Ryvkin, Shmuel Einav

Tel Aviv University, Ramat Aviv, Israel

Paper No. ESDA2008-59341, pp. 103-112; 10 pages
doi:10.1115/ESDA2008-59341
From:
  • ASME 2008 9th Biennial Conference on Engineering Systems Design and Analysis
  • Volume 2: Automotive Systems; Bioengineering and Biomedical Technology; Computational Mechanics; Controls; Dynamical Systems
  • Haifa, Israel, July 7–9, 2008
  • Conference Sponsors: International
  • ISBN: 978-0-7918-4836-4 | eISBN: 0-7918-3827-7
  • Copyright © 2008 by ASME

abstract

Main cause of restenosis after balloon angioplasty is due to the stresses generated in the artery as well as from the stent artery interaction. Understanding the factors that are involved in this interaction and the ability to evaluate the stresses that are formed in the artery, could help to lessen the number of failures. The goal of the present study is to develop computationally efficient analytical model for estimating the potential damage factor as the contact stresses, and to investigate their influence upon stent design, artery and plaque parameters. The artery was stipulated to be thick walled cylinder and its stress-strain state was determined from analytic solution of Lame problem. An analytic model based on the analysis of the beams deformation in the framework Euler-Bernoulli assumptions was formulated for the stent. The radial pressure, which is exerted on the inner surface of the artery, is assumed to be an average of contact stresses applied by the stent and the blood pressure. The variation in the Potential Damage Factor value as a function of the mismatch between stent’s and artery’s diameters is linear, and as much as the diameter of the artery increases, the Potential Damage Factor for the same mismatch decreases. For arteries with 75% blocking and mismatch of 1mm, the potential damage factor is 4.5.

Copyright © 2008 by ASME
Topics: stents

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In