A New Instrument for Tensile Testings of Thin Free Standing Films at High Strain Rates PUBLIC ACCESS

[+] Author Affiliations
Eran Ben-David, Doron Shilo, Daniel Rittel, David Elata

Technion-Israel Institute of Technology, Haifa, Israel

Paper No. ESDA2008-59110, pp. 517; 1 page
  • ASME 2008 9th Biennial Conference on Engineering Systems Design and Analysis
  • Volume 1: Advanced Energy Systems; Advanced and Digital Manufacturing; Advanced Materials; Aerospace
  • Haifa, Israel, July 7–9, 2008
  • Conference Sponsors: International
  • ISBN: 978-0-7918-4835-7 | eISBN: 0-7918-3827-7
  • Copyright © 2008 by ASME


The design of more reliable and sophisticated Micro Electro Mechanical Systems (MEMS) relies on the knowledge, understanding, and ability to control their mechanical response. In recent years, enormous progress has been made in developing new measurement techniques for studying the mechanical response of sub-micro scale specimens. However, there is still a lack of knowledge and testing techniques regarding the response of MEMS structures to mechanical shocks, which can appear during fabrication, deployment, or operation. We present an instrument for testing the mechanical response of thin free standing films under uniaxial tensile stress at high strain rates of up to 2×103 sec-1. The experimental system consists of a micro-device, which contains the freestanding specimen, and an external system, which includes instrumentation for measuring its mechanical response. The components of the external system are controlled by a single interface, and allow for a variety of displacement profiles to be applied to the specimens. All the instrumentation operates at high sampling rates (above 1 MHz) to allow for high strain rate application. The freestanding specimen is produced by MEMS fabrication techniques on a micro-device that also includes S-springs to protect the specimen and aluminum grating lines for measuring the displacement. One side of the chip is pulled by a piezoelectric translation stage, which allows controlling the displacement with a nanometric resolution and applying high velocities and accelerations. The specimen displacement is monitored by an optical encoder device that measure the displacement of the aluminum grating located on the micro-device close to the specimen with an accuracy of about 10 nm. The load is determined by measuring the charge on a piezoelectric PMN-30%PT shear plate, which is connected to the pin that holds the micro-device. The new instrument is applied for studying the response of thin aluminum films with thickness of 0.5–1 μm, width that varies between 5 to 50 μm, and length of 120 μm. The mechanical response of these specimens is measured at different strain rates and is compared to measurement done by nanoindentation.

Copyright © 2008 by ASME
Topics: Instrumentation
This article is only available in the PDF format.



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In