Full Content is available to subscribers

Subscribe/Learn More  >

Application of Split Flow Design Technique to Simple Microchannel Geometries for Enhanced Mixing

[+] Author Affiliations
Siddharth Bhopte, Bahgat Sammakia, Bruce Murray

State University of New York at Binghamton, Binghamton, NY

Paper No. BioMed2008-38096, pp. 19-20; 2 pages
  • ASME 2008 3rd Frontiers in Biomedical Devices Conference
  • ASME 2008 3rd Frontiers in Biomedical Devices Conference
  • Irvine, California, USA, June 18–20, 2008
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 0-7918-4833-7 | eISBN: 0-7918-3823-4
  • Copyright © 2008 by ASME


The ability to control mixing of reagents in MEMS systems is crucial for many biological and chemical analysis applications. However mixing in these microfluidic devices is a challenge because the flows are laminar corresponding to very low Reynolds number. In this paper mixing of such reagents in simple microchannel geometries is investigated computationally. A novel concept of “split flow design” is applied to these simple microchannel configurations. Significant improvement in mixing is seen by employing the split flow design technique.

Copyright © 2008 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In