0

Full Content is available to subscribers

Subscribe/Learn More  >

The Ultimate Strength of Cylindrical Liquid Storage Tanks Under Earthquakes: Seismic Capacity Test of Tanks Used in PWR Plants — Part 2, Static Post-Buckling Strength Tests

[+] Author Affiliations
Toru Iijima, Kenichi Suzuki

Japan Nuclear Energy Safety Organization (JNES), Tokyo, Japan

Takashi Okafuji

Mitsubishi Heavy Industries, Ltd., Nagasaki, Japan

Hideyuki Morita, Ryo Fujimoto

Mitsubishi Heavy Industries, Ltd., Hyogo, Japan

Paper No. PVP2008-61953, pp. 333-339; 7 pages
doi:10.1115/PVP2008-61953
From:
  • ASME 2008 Pressure Vessels and Piping Conference
  • Volume 8: Seismic Engineering
  • Chicago, Illinois, USA, July 27–31, 2008
  • Conference Sponsors: Pressure Vessels and Piping
  • ISBN: 978-0-7918-4831-9 | eISBN: 0-7918-3828-5
  • Copyright © 2008 by ASME

abstract

Since 2002, Japan Nuclear Energy Safety Organization (JNES) has been carrying out seismic capacity tests for several types of equipment which significantly contribute to core damage frequency. The primary purpose of this study is to acquire the seismic capacity data of thin walled cylindrical liquid storage tanks in nuclear power plants and to establish an evaluation procedure of the ultimate strength. As for the refueling water storage tank and the condensate storage tank which are used in PWR plants, elephant-foot bulge (EFB) is the typical buckling behavior of those tanks and the primary failure mode to be focused on. In the previous study, by conducting the dynamic and static buckling tests with aluminum alloy, it was confirmed that static buckling test represents dynamic buckling and post-buckling behavior in terms of energy absorption capacity. In this study, static buckling tests with actual material were performed in order to evaluate the ultimate strength of real tanks. Although the buckling mode did not differ among materials, tests with actual materials (steel, stainless steel) resulted higher seismic capacity compared to the aluminum alloy, and inner water leakage occurred from the cracks initiated at the secondary buckling on the EFB section.

Copyright © 2008 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In