Full Content is available to subscribers

Subscribe/Learn More  >

Fluid Pressure on Rectangular Tank Consisting of Rigid Side Walls and Rectilinearly Deforming Bottom Plate Due to Uplift Motion

[+] Author Affiliations
Tomoyo Taniguchi, Toru Segawa

Tottori University, Tottori, Japan

Paper No. PVP2008-61166, pp. 317-323; 7 pages
  • ASME 2008 Pressure Vessels and Piping Conference
  • Volume 8: Seismic Engineering
  • Chicago, Illinois, USA, July 27–31, 2008
  • Conference Sponsors: Pressure Vessels and Piping
  • ISBN: 978-0-7918-4831-9 | eISBN: 0-7918-3828-5
  • Copyright © 2008 by ASME


Although the uplift motion of flat bottom cylindrical shell tanks has been considered to contribute toward various damage to tanks, the mechanics were not fully understood. As well as computing uplift displacement of the tanks, accurate prediction of fluid pressure accompanied with uplift motion is indispensable to prevent the tanks from severe damage. This paper mathematically derives the fluid pressure on a rectangular tank with unit depth consisting of rigid walls and rectilinearly deforming bottom plate accompanied with the uplift motion. Assuming perfect fluid and velocity potential, the continuity equation is given by Laplace equation. The fluid velocity imparted by motion of rigid walls, immobile bottom plate and rectilinearly deformed bottom plate of tank accompanied with uplift of the tank constitutes boundary conditions. Since this problem is set as the parabolic partial differential equation of Neumann problem, the velocity potential is solved with Fourier-cosine expansion. Derivatives of the velocity potential with respect to time give the fluid pressure at arbitrary point inside the tank. The proposed mathematical solution well converges with a first few terms of Fourier series. Diagrams that depict the fluid pressure normalized by product of angular acceleration and diagonals of the tank are presented.

Copyright © 2008 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In