Full Content is available to subscribers

Subscribe/Learn More  >

Inelastic Seismic Test of the Small Bore Piping and Support System: Part 2 — Static Failure Test for Piping Support Equipment

[+] Author Affiliations
Eiji Shirai

Kansai Electric Power Co., Inc., Osaka, Japan

Kazutoshi Eto

Kyushu Electric Power Co., Inc., Fukuoka, Japan

Akira Umemoto

Shikoku Electric Power Co., Inc., Takamatsu, Japan

Toshiaki Yoshii

Hokkaido Electric Power Co., Sapporo, Japan

Masami Kondo

Japan Atomic Power Co., Inc., Tokyo, Japan

Hiroshi Shimizu

Mitsubishi Heavy Industries, Ltd., Hyogo, Japan

Koichi Tai

Mitsubishi Heavy Industries, Ltd., Kobe, Japan

Paper No. PVP2008-61351, pp. 239-245; 7 pages
  • ASME 2008 Pressure Vessels and Piping Conference
  • Volume 8: Seismic Engineering
  • Chicago, Illinois, USA, July 27–31, 2008
  • Conference Sponsors: Pressure Vessels and Piping
  • ISBN: 978-0-7918-4831-9 | eISBN: 0-7918-3828-5
  • Copyright © 2008 by ASME


In this paper, we focused on small-bore piping with a diameter less than 4 inches including support equipments on base concrete, with the purpose of verifying a sufficient seismic design margin. The support element tests were designed to obtain the relationship between force and displacement at piping, when the seismic force loaded on piping support equipments consisting of a U-bolt, support element, base plate, anchorage on a base concrete by confirming the behavior of the equipments as it reaches its failure. The support element tests are the part of inelastic seismic test program [1, 2] and aimed to obtain the following basic data on small-bore piping support equipments: • Relationship between force and displacement at piping; • Failure capacity of piping equipments; • Ductility ratio of piping equipments. Our results can be separated into 4 categories based on the relationship between piping force and displacement and failure mode. Tested failure capacity was higher than the designed allowable force for all failure by a factor of 1.5 to 23, indicating a margin of failure capacity. Cantilever support type have a low ductility ratio when there is the snap of expansion anchor or U-bolt and a high ductility ratio when there is significant plastic deformation of the support. Like their cantilever type counterparts, frame support type have a low ductility when there is the snap of expansion anchor and a high ductility ratio when there is significant plastic deformation of the support and U-bolt, even with brittle failure.

Copyright © 2008 by ASME
Topics: Pipes , Failure



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In