0

Full Content is available to subscribers

Subscribe/Learn More  >

Strain-Based Acceptance Criteria for Inelastic Analysis

[+] Author Affiliations
Douglas J. Ammerman

Sandia National Laboratories, Albuquerque, NM

Gordon S. Bjorkman

U.S. Nuclear Regulatory Commission, Washington, D.C.

Paper No. PVP2008-61728, pp. 643-649; 7 pages
doi:10.1115/PVP2008-61728
From:
  • ASME 2008 Pressure Vessels and Piping Conference
  • Volume 7: Operations, Applications and Components
  • Chicago, Illinois, USA, July 27–31, 2008
  • Conference Sponsors: Pressure Vessels and Piping
  • ISBN: 978-0-7918-4830-2 | eISBN: 0-7918-3828-5
  • Copyright © 2008 by ASME and U.S. Government

abstract

Modern finite element codes used in the design of nuclear material transportation and storage casks can readily calculate the response of the packages beyond the elastic regime. These packages are designed to protect workers, the public, and the environment from the harmful effects of the transported radioactive material following a sequence of hypothetical accident conditions. Hypothetical accidents considered for transport packages include a 9-meter free drop onto an essentially unyielding target and a 1-meter free fall onto a 30-cm diameter puncture spike. For storage casks, accident conditions can include drops, tip-over, and aircraft impact. All of these accident events are energy-limited rather than load-limited, as is typically the case for boilers and pressure vessels. Therefore, it makes sense to have analysis acceptance criteria that are more closely related to absorbed energy than to applied load. Strain-based acceptance criteria are the best way to meet this objective. As cask vendors’ ability to perform non-linear impact analysis has improved, the need for a code-based method to interpret the results of this type of analysis has increased. The ASME Section III Working Group on Design of Division 3 Containments is working with Section III Working Group Design Methodology to develop strain-based acceptance criteria to use within the ASME Code for energy-limited events. This paper will briefly discuss the efforts within the ASME, detail the advantages of using strain-based criteria, discuss the problem areas associated with establishing strain-based criteria, and provide insights into inelastic analyses as applied to radioactive material transportation and storage casks in general. The views expressed represent those of the authors and not necessarily those of their respective organizations or the ASME.

Copyright © 2008 by ASME and U.S. Government

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In