Full Content is available to subscribers

Subscribe/Learn More  >

Joule Heating Induced Thermal and Hydrodynamic Development in Microfluidic Electroosmotic Flow

[+] Author Affiliations
G. Y. Tang, C. Yang, C. J. Chai, H. Q. Gong

Nanyang Technological University, Republic of Signapore

Paper No. ICMM2004-2442, pp. 995-1002; 8 pages
  • ASME 2004 2nd International Conference on Microchannels and Minichannels
  • ASME 2nd International Conference on Microchannels and Minichannels
  • Rochester, New York, USA, June 17–19, 2004
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 0-7918-4164-2
  • Copyright © 2004 by ASME


Joule heating is present in electrokinetically driven flow and mass transport in microfluidic systems. Specifically, in the cases of high applied voltages and concentrated buffer solutions, the thermal management may become a problem. In this study, a mathematical model is developed to describe the Joule heating and its effects on electroosmotic flow and mass species transport in microchannels. The proposed model includes the Poisson equation, the modified Navier-Stokes equation, and the conjugate energy equation (for the liquid solution and the capillary wall). Specifically, the ionic concentration distributions are modeled using (i) the general Nernst-Planck equation, and (ii) the simple Boltzmann distribution. These governing equations are coupled through temperature-dependent phenomenological thermal-physical coefficients, and hence they are numerically solved using a finite-volume based CFD technique. A comparison has been made for the results of the ionic concentration distributions and the electroosmotic flow velocity and temperature fields obtained from the Nernst-Planck equation and the Boltzmann equation. The time and spatial developments for both the electroosmotic flow fields and the Joule heating induced temperature fields are presented. In addition, sample species concentration is obtained by numerically solving the mass transport equation, taking into account of the temperature-dependent mass diffusivity and electrophoresis mobility. The results show that the presence of the Joule heating can result in significantly different electroosomotic flow and mass species transport characteristics.

Copyright © 2004 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In