0

Full Content is available to subscribers

Subscribe/Learn More  >

Analysis of Electroosmotic Flow in a Microchannel Packed With Microspheres

[+] Author Affiliations
Y. J. Kang, C. Yang, X. Y. Huang

Nanyang Technological University, Republic of Signapore

Paper No. ICMM2004-2420, pp. 841-848; 8 pages
doi:10.1115/ICMM2004-2420
From:
  • ASME 2004 2nd International Conference on Microchannels and Minichannels
  • ASME 2nd International Conference on Microchannels and Minichannels
  • Rochester, New York, USA, June 17–19, 2004
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 0-7918-4164-2
  • Copyright © 2004 by ASME

abstract

The electroosmotic flow in a microchannel packed with microspheres under both direct and alternating electric fields is analyzed. In the case of the steady DC electroosmosis in a packed microchannel, the so-called “capillary model” is used, in which it is assumed that a porous medium is equivalent to a series of intertwined tubules. The interstitial tubular velocity is obtained by analytically solving the Navier-Stokes equation and the complete Poisson-Boltzmann equation. Then using the volume averaging method, the solution for the electroosmotic flow in a single charged cylindrical tubule is applied to estimate the electroosmosis in the overall porous media by introducing the porosity and tortuosity. Assuming uniform porosity, an exact solution accounting for the electrokinetic wall effect is obtained by solving the modified Brinkman momentum equation. For the electroosmotic flow under alternating electric fields in a cylindrical microchannel packed with microspheres of uniform size, two different conditions regarding the openness of channel ends are considered. Based on the capillary model, the time-periodic oscillating electroosmotic flow in an open-end microchannel in response to the application of an alternating electric field is obtained using the Green’s function approach to the Navier-Stokes equation. When the two ends of the channel are closed, a backpressure is induced to generate a counter flow, resulting in a new zero flow rate. Such induced backpressure associated with the counter-flow in a closed-end microchannel is obtained analytically by solving the transient modified Brinkman momentum equation.

Copyright © 2004 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In