0

Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Simulation on the Electrophoretic Motion of Multiple Particles in Microchannels

[+] Author Affiliations
Chunzhen Ye, Dongqing Li

University of Toronto, Toronto, ON, Canada

Paper No. ICMM2004-2419, pp. 833-840; 8 pages
doi:10.1115/ICMM2004-2419
From:
  • ASME 2004 2nd International Conference on Microchannels and Minichannels
  • ASME 2nd International Conference on Microchannels and Minichannels
  • Rochester, New York, USA, June 17–19, 2004
  • Conference Sponsors: Nanotechnology Institute
  • ISBN: 0-7918-4164-2
  • Copyright © 2004 by ASME

abstract

This paper considers the electrophoretic motion of multiple spheres in an aqueous electrolyte solution in a straight rectangular microchannel, where the size of the channel is close to that of the particles. This is a complicated 3-D transient process where the electric field, the flow field and the particle motion are coupled together. The objective is to numerically investigate how one particle influences the electric field and the flow field surrounding the other particle and the particle moving velocity. It is also aimed to investigate and demonstrate that the effects of particle size and electrokinetic properties on particle moving velocity. Under the assumption of thin electrical double layers, the electroosmotic flow velocity is used to describe the flow in the inner region. The model governing the electric field and the flow field in the outer region and the particle motion is developed. A direct numerical simulation method using the finite element method is adopted to solve the model. The numerical results show that the presence of one particle influences the electric field and the flow field adjacent to the other particle and the particle motion, and that this influences weaken when the separation distance becomes bigger. The particle motion is dependent on its size, with the smaller particle moving a little faster. In addition, the zeta potential of particle has an effective influence on the particle motion. For a faster particle moving from behind a slower one, numerical results show that the faster moving particle will climb and then pass the slower moving particle then two particles’ centers are not located on a line parallel to the electric field.

Copyright © 2004 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In